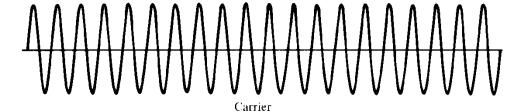
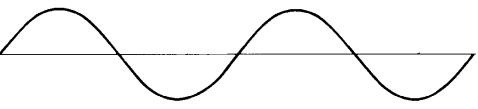
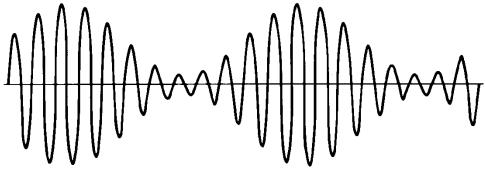
Sistemas Multiusuarios

Capítulo 5
Técnicas para la Codificación de las Señales

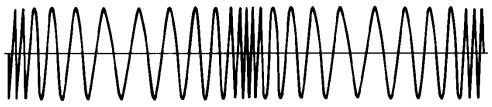

Técnicas de Codificación

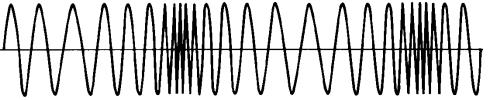

- Datos Digitales, Señales Digitales
- Datos Analógicos, señales digitales
- Datos Digitales, señales analógicas
- Dalos Analógicos, señales analógicas

Datos Analógicos, Señales Analógicas

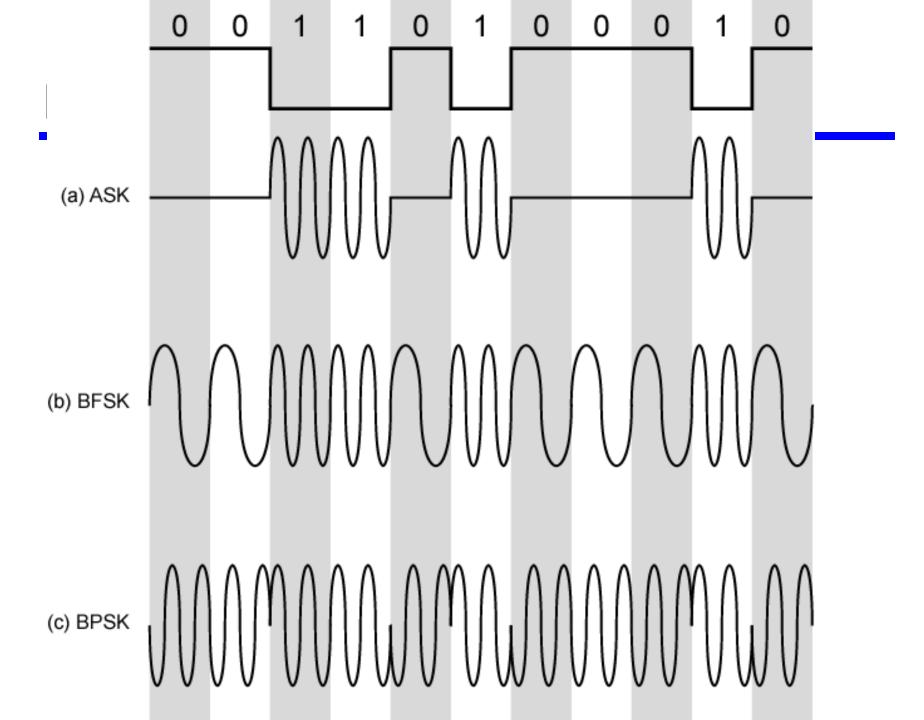

- Por que modular señales analógicas?
 - —Altas frecuencias logran transmisiones mas eficientes
 - —FDM
- Tipos de modulación
 - —Amplitud
 - —Frecuencia
 - —Fase

Modulación Analógica




Modulating sine-wave signal

Amplitude-modulated (DSBTC) wave


Phase-modulated wave

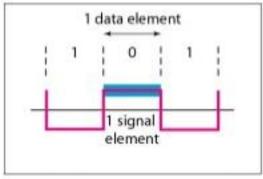
Frequency-modulated wave

Datos Digitales, Señales Analógicas

- Sistema público telefónico
 - —300Hz a 3400Hz
 - —Usa modem (modulator-demodulator)
- Amplitude shift keying (ASK)
- Binary Frequency shift keying (FSK)
- Binary Phase shift keying (PSK)

Datos Digitales, Señales Digitales

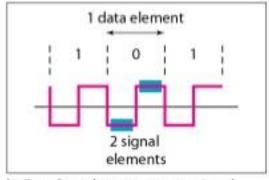
- Señal Digital
 - Discreta, pulsos de voltaje discontinuos
 - —Cada pulso es un elemento de la señal
 - —Datos binarios se codifican en estos elementos
- La conversión de datos digitales en señales digitales se denomina Codificación de línea
- Se utilizan dos técnicas más:
 - —Codificación de bloques
 - —Aleatorización (Scrambling)

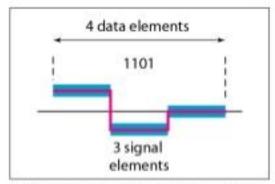

Terminología (1)

- Unipolar
 - Todos los elementos de la señal tienen la misma polaridad
- Polar
 - Un estado lógico es representado por un voltaje positivo, el otro por uno negativo
- Bipolar o Binaria multinivel
 - Tres voltajes: positivo, negativo y cero
- Velocidad
 - Velocidad de los datos en bps
- Duración o longitud de un bit
 - Tiempo tomado por el transmisor en emitir el bit

Terminología (2)

- Velocidad de modulación o señalización
 - —Velocidad a la que cambia la señal
 - —Medida en **baudios** = elementos de señal por segundo
 - —Interviene el ancho de banda del canal
 - -Especial atención en ráfagas de 0 y 1


Bps y baudios


 a. One data element per one signal element (r = 1)

 c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

Interpretación de las señales

- Es necesario conocer
 - Temporización de los bits: cuando comienzan y terminan
- Factores que afectan una interpretación exitosa de la señal
 - **—**S/N
 - —Velocidad
 - —Ancho de banda

¿Como comparar los esquemas? (1)

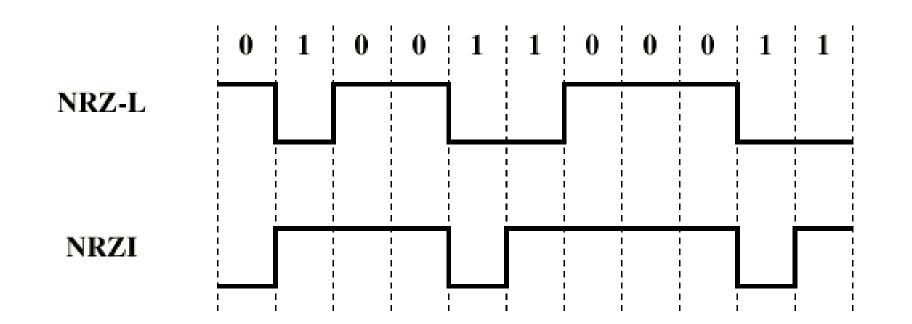
- Espectro de la señal
 - Ausencia de altas frecuencias requerirá menos ancho de banda
 - Ausencia de componente continua permite acople por transformadores (Telefonía y larga distancia)
 - —Potencia concentrada en la mitad del ancho de banda
- Sincronización entre receptor y transmisor
 - —Relojes externos
 - —Mecanismo de sincronismo incluido en la señal

¿Como comparar los esquemas? (2)

- Detección de errores
 - Incorporada en la codificación de la señal
- Inmunidad al ruido e interferencias
 - Algunos códigos son mejores que otros
- Costo y complejidad
 - —Altas velocidades signifcan altos costos
 - Algunos códigos requieren velocidades de señalización mayores que los de datos

Esquemas de codificación

- Unipolar
 - NRZ (tradicional)
- Polar
 - No retorno a Nivel Cero (NRZ-L)
 - No retorno a cero invertido (NRZI)
 - Bifásica: Manchester y Manchester Diferencial (ethernet original)
- Bipolar
 - AMI
 - Seudoternario
- Multinivel (100Base y 1000Base)
 - 2B1Q, 8B6T y 4D-PAM5
- Multitransmisión
 - MLT-3


No retorno a nivel cero (NRZ-L)

- Dos voltajes diferentes para los bits 0 y 1
- Voltaje constante durante el intervalo del bit
- Ej. Ausencia de voltaje para el 0, voltaje constante positivo para el 1
- Es mas frecuente usar un voltaje positivo y otro negativo para cada bit conocido como NRZ-L

NRZI (USB)

- No retorno a cero cambiando en los 1s
- Voltaje constante en la duración del bit
- Dato es codificado con la presencia o ausencia de transición de señal al comienzo del bit
- Transición (creciente o decreciente) significa 1
- Si no hay transición, significa 0
- Codificación diferencial o sea que no codifica el valor absoluto sino cambia en función de los cambios anteriores.

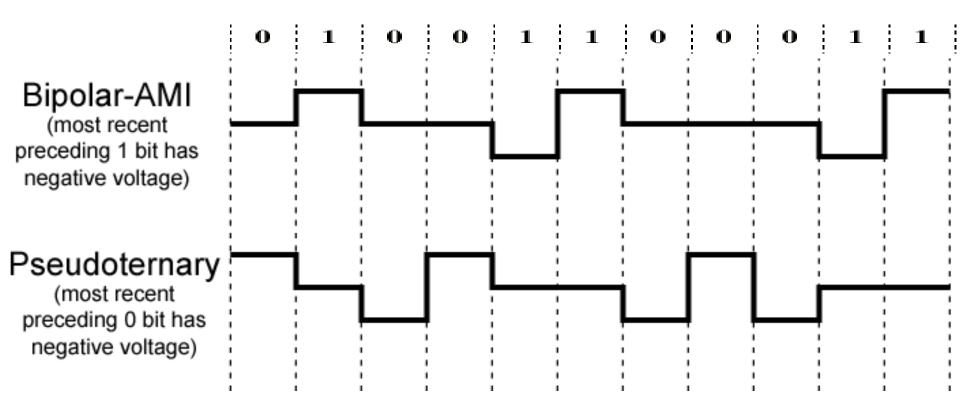
NRZ

NRZ ventajas y desventajas

- Ventajas
 - —Fáciles de implementar
 - —Hacen un buen uso del Ancho de Banda
- Desventajas
 - —Componente de continua
 - —Ausencia de la capacidad de sincronismo
- Usado en grabaciones magnéticas
- No es frecuente en la transmisión de señales

Codificación diferencial

- Compara la polaridad de elementos adyacentes
- Es mas confiable detectar transiciones que niveles
- En esquemas complejos de transmisión, es fácil perder la polaridad (inversión de pares)


Binario Multinivel

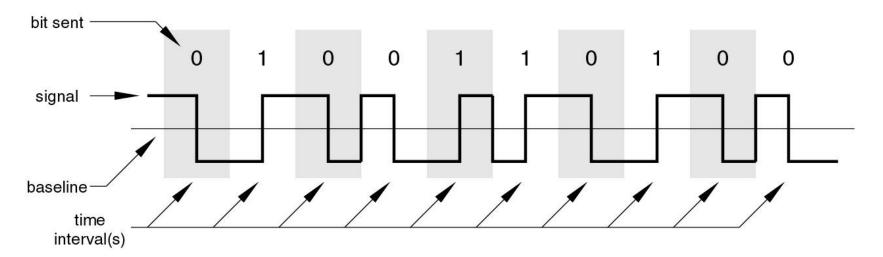
- Usa mas de 2 niveles
- Bipolar-AMI
 - -Cero representado por ausencia de señal en la línea
 - Uno representado por pulsos negativos o positivos
 - —Los unos se alternan en su polaridad
 - No hay perdida de sincronismo si aparece una larga secuencia de 1s (si de ceros)
 - —Sin componente continua
 - —Bajo Ancho de Banda
 - Detección de errores sencillo

Seudoternario

- Uno representado por ausencia de señal en la línea
- Cero representado por voltajes positivos y negativos
- No tiene ventajas o desventajas sobre el bipolar-AMI

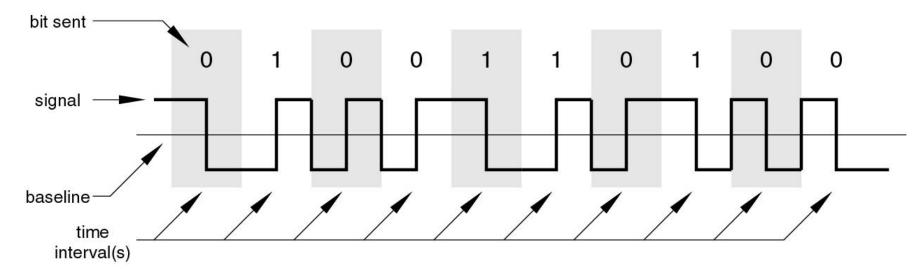
Bipolar-AMI y Pseudoternario

Desventajas del Binario Multinivel


- No es tan eficiente como NRZ
 - —Cada elemento de señal solo representa un bit
 - —En un sistema de 3 niveles se podrían representar $log_2 3 = 1.58$ bits (para 1 bit de info)
 - —Receptor debe distinguir entre 3 niveles (+A, -A, 0)
 - —Requiere aprox. 3dB mas de potencia de señal para la misma probabilidad de error de bit

Bifase

- Manchester
 - —Transición en el medio del intervalo de cada bit
 - —Transición se usa como reloj y datos
 - -Ascendente representa 1
 - —Descendente representa 0
 - —Usado en IEEE 802.3 (ethernet original)
- Manchester diferencial
 - —Transición en el medio es solo para sincronismo
 - -Transición al comienzo del bit representa un 0
 - —Sin transición al comienzo, representa un 1
 - —Nota: esto es un esquema de codificación diferencial
 - —Usado en IEEE 802.5

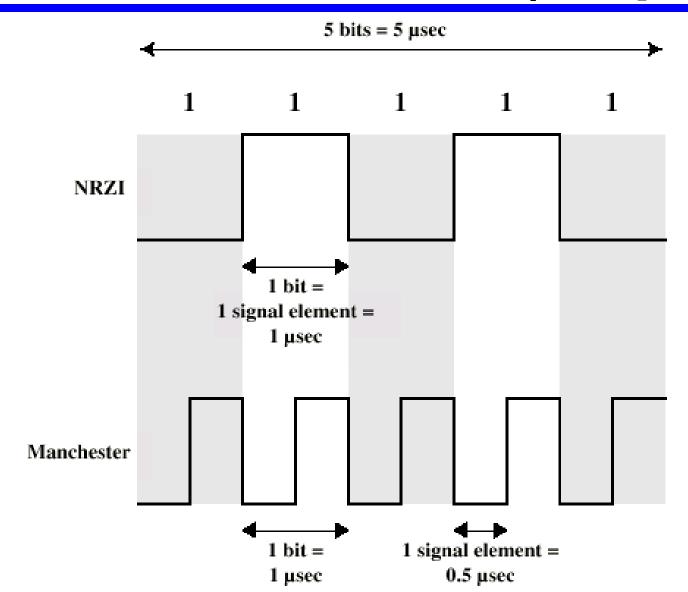

Codificación Manchester

Manchester Encoding

Codificación Manchester Diferencial

Differential Manchester Encoding

Bifase: ventajas y desventajas


Contras

- —Una transición por bit y posiblemente 2
- —Velocidad de modulación máxima es el doble que NRZ
- —Requiere mas Ancho de Banda

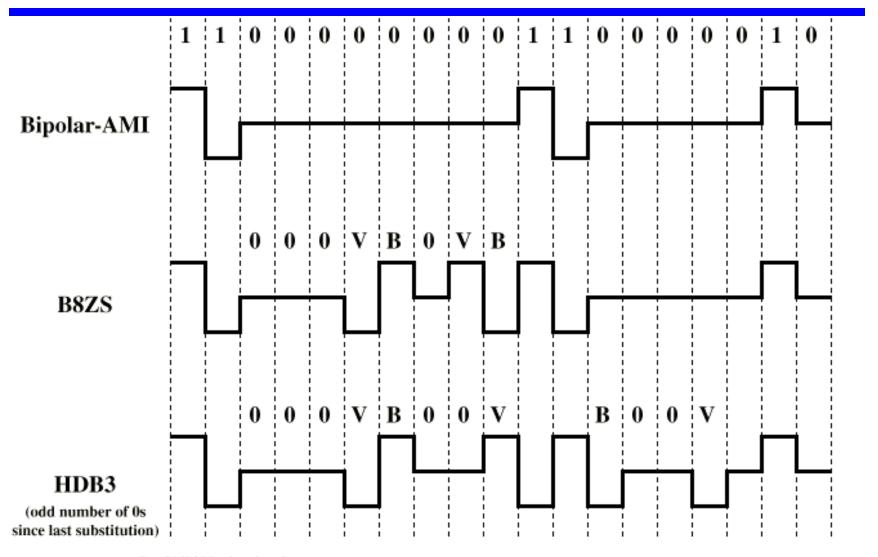
Pros

- —Autosincronizado
- —Sin componente continua
- —Detección de errores
 - Ausencia de la transición esperada

Velocidad de Modulación (1Mbps)

Scrambling

- Reemplaza secuencias que producen voltajes constantes
- Secuencia de relleno
 - Debe tener suficientes transiciones para lograr el sincronismo
 - Debe ser reconocida por el receptor y reemplazada por la original
 - Misma longitud que la original
- Sin componente de continua
- No hay largas secuencias de nivel cero
- No reduce la velocidad
- Capacidad de detección de errores

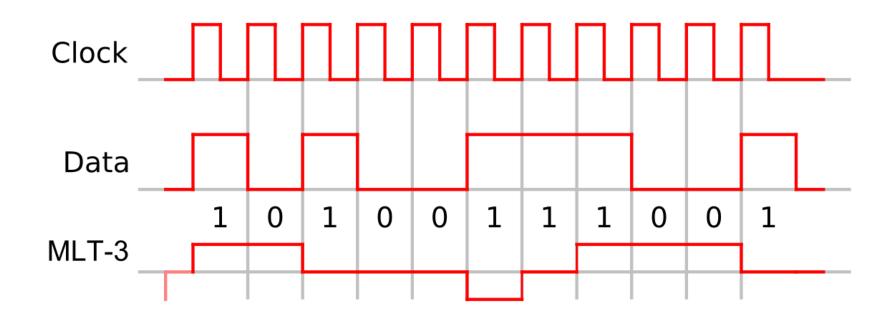

B8ZS

- Bipolar con substitución de 8 ceros
- Basado en bipolar-AMI
- Si es un byte de 0 y el último pulso precedente fue positivo, se reemplaza por 000+-0-+
- Si es un byte de 0 y el ultimo pulso precedente fue negativo, se reemplaza por 000-+0+-
- Causa 2 violaciones al código AMI
- Combinaciones difíciles de provocar por el ruido
- Receptor detecta estas combinaciones y reemplaza el octeto por 8 0s

HDB3

- High Density Bipolar 3 ceros
- Basado en bipolar-AMI
- Cadenas de cuatro ceros son reemplazados por uno o dos pulsos

B8ZS and HDB3



B = Valid bipolar signal V = Bipolar violation

Multinivel

- mBnL o mBnN significa m bits codificados en n señales de N niveles.
- $2^{m} <= L^{n}$
- 2B1Q: 2 bits codificados en 1 señal cuaternaria.
- 8B6T: 8 bits codificados en 6 señales ternarias.
- 4D-PAM5: 4 dimensiones que llevan codificación con modulación de ancho de pulso de 5 niveles.

Multitransmisión MLT-3

Codificación de bloques

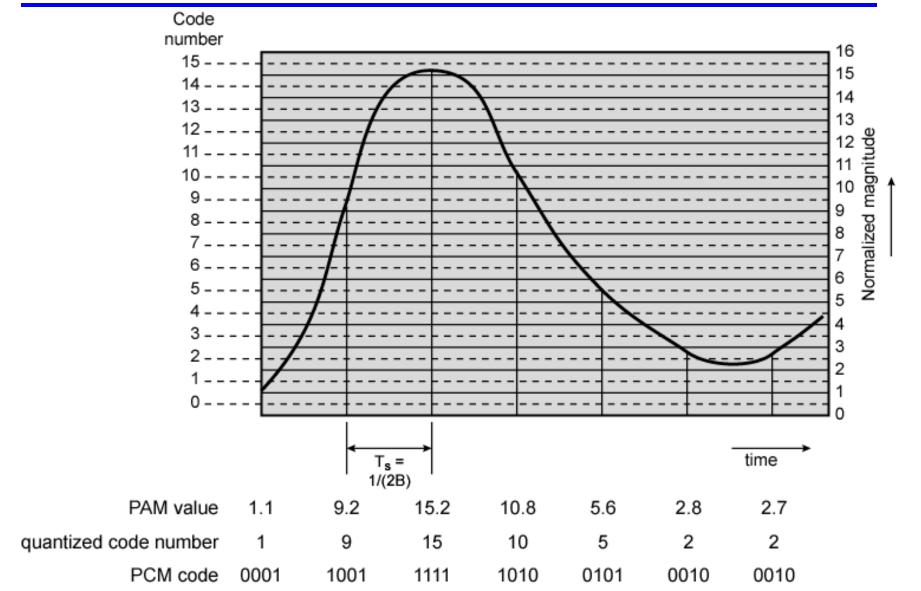
- Se utiliza para asegurar la sincronización y ofrecer algún tipo de detección de errores inherente.
- Codificación mB/nB que significa que se reemplazan m bits por n bits donde n>m
- Tres etapas: división, sustitución y combinación
- 4B/5B
- 8B/10B
- Control

Mapeo de códigos 4B/5B

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (Start delimiter)	11000
0100	01010	K (Start delimiter)	10001
0101	01011	T (End delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

Datos Analógicos, Señales Digitales

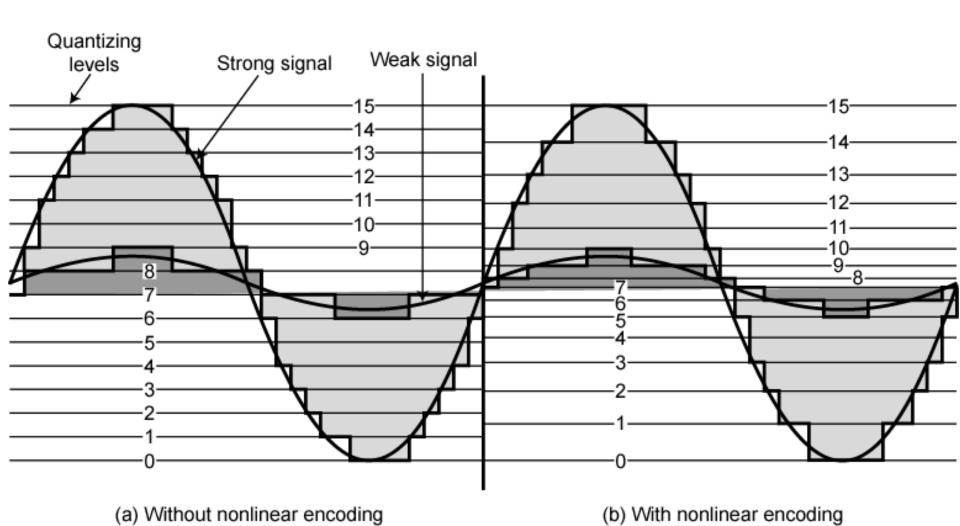
- Digitalización
 - Conversion de datos analógicos en datos digitales
 - —Datos digitales pueden ser transmitidos usando NRZ-L
 - —Se puede usar otro código
 - Datos digitales se convierten en señales analógicas
 - —A/D usa codec
 - —Modulación por codificación de pulsos (PCM)
 - —Modulación Delta (**DM**)

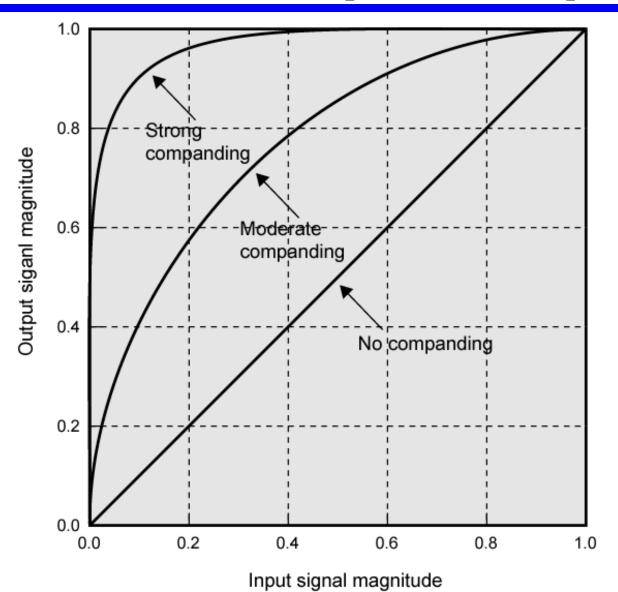

PCM (1)

- Si una señal es muestreada a intervalos regulares a una frecuencia de mas del doble que la frecuencia mas alta de la misma, las muestras contienen toda la información de la señal original. (Teorema del muestreo)
- Si los datos de voz se limitan por debajo de 4000Hz
- Requiere 8000 muestras por segundo
- Muestras analógicas (Pulse Amplitude Modulation, PAM)
- A cada muestra se le asigna un valor digital

PCM (2)

- 4 bit da 16 niveles
- Cuantificación
 - —Puede generar error o ruido
 - —Significa que es imposible recuperar el original
- 8 bit da 256 niveles
- Calidad comparable con la transmisión analógica
- 8000 muestras por segundo de 8 bits cada una da 64kbps


Ejemplo PCM


Codificación no lineal

- La cuantificación no se hace equi-espaciada
- Se reduce la distorsión media
- Se puede comprimir y expandir la señal

Efecto de la Codificación no lineal

Funciones de Compresión típicas

Prestaciones de la conversión A/D

- Repetidores no agregan ruido
- Uso de TDM donde no hay ruido de intermodulación
- Mejor uso del sistema de comunicaciones